MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

Important Instructions to Examiners

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

Model Answer: Summer - 2019

Model Answer: Summer - 2019

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	b) Ans.			
		i.Explain Dupuit's equation for equivalent pipes. $\frac{l}{d^{5}}=\frac{l}{d_{1}^{5}}+\frac{l}{d_{2}^{5}}+\frac{l}{d_{3}^{5}}$	1	
		$\begin{aligned} & \mathrm{l}=\text { length of equivalent pipe }=1_{1}+\mathrm{l}_{2}+\mathrm{l}_{3} \\ & \mathrm{~d}=\text { diameter of equivalent pipe } \\ & \mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}=\text { diameter of pipes in series } \\ & \mathrm{l}_{1}, \mathrm{l}_{2}, \mathrm{l}_{3}=\text { length of pipes in series } \end{aligned}$	1	
		ii.Define Moddy's diagra m diagram with its use. Moody's diagram: It is the graphical representation of Friction factor verses Reynold's number (R_{e}) Curves for various values of relative roughness (ε)	1	
		Uses: Moody's chart is used to find friction factor of a commercial pipe.	1	4
	c) Ans.	i) Define Reynold's number and give any two applications of it. Reynold's Number: It is the ratio of inertia force to viscous force. Applications:	1	
		i) Predicting whether the flow is laminar. ii) Predicting whether the flow is turbulent. iii) Finding out coefficient of friction in order to determine Frictional loss very accurately.	$\begin{gathered} 1 / 2 \\ \text { each } \\ \text { (any } \\ \text { two) } \end{gathered}$	
		ii)Find the discharge flowing through a pipe of 10 cm dia and velocity is $1 \mathrm{~m} / \mathrm{sec}$. Data: $\mathrm{d}=0.1 \mathrm{~m}, \mathrm{~V}=1 \mathrm{~m} / \mathrm{s}$, $\begin{aligned} & \mathrm{Q}=\mathrm{A} \times \mathrm{V} \\ & \mathrm{Q}=\frac{\pi}{4} \times(0.1)^{2} \times 1 \end{aligned}$	1	4
		$\mathrm{Q}=0.00785 \mathrm{~m}^{3} / \mathrm{s}$	1	

$\begin{aligned} & \hline \text { Que. } \\ & \text { No. } \\ & \hline \end{aligned}$	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	d) Ans.	A circular plate of $\mathbf{4} \mathbf{m}$ diameter is immersed in water such that its greatest and least depth below the free surface of water are $\mathbf{6 m}$ and 4 m respectively. Calculate: i) Total pressure on one face of the plate. ii) The position of centre of pressure. Data: Diameter of plate $(\mathrm{d})=4 \mathrm{~m}$ Here, $\operatorname{Sin} \theta=\frac{2}{4}$ $\begin{aligned} & \theta=\operatorname{Sin}^{-1}(0.5) \\ & \theta=30^{0} \end{aligned}$ from fig. $\begin{aligned} & \operatorname{Sin} \theta=\frac{B C}{A B} \\ & B C=\operatorname{Sin} \theta \times A B \\ & \\ & =\operatorname{Sin} 30^{\circ} \times 2 \\ & =1 \mathrm{~m} \\ & \therefore \quad \bar{y}=4+1 \\ & \\ & \bar{y}=5 \mathrm{~m} \end{aligned}$	1	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
		$\mathrm{H}_{\mathrm{L}}=\frac{0.5 \mathrm{~V}^{2}}{2 \mathrm{~g}}$ 2. Loss of head due to sudden expansion. $\mathrm{H}_{\mathrm{L}}=\frac{\left(\mathrm{V}_{1}-V_{2}\right)^{2}}{2 \mathrm{~g}}$ 3. Loss of head due to sudden contraction. $\mathrm{H}_{\mathrm{L}}=\frac{0.5 \mathrm{~V}^{2}}{2 \mathrm{~g}}$ 4. Loss of head at exit. $\mathrm{H}_{\mathrm{L}}=\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}$	$1 / 2$ $1 / 2$	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	a)	$\begin{aligned} & \mathrm{P}=\frac{\gamma_{\mathrm{w}} \times \mathrm{Q} \times \mathrm{H}_{\mathrm{m}}}{\eta} \\ & \mathrm{P}=\frac{9810 \times 30 \times 10^{-3} \times 36.60}{0.85}=12672.21 \mathrm{w} \\ & \mathrm{P}=12.67 \mathrm{kw} \end{aligned}$ OR If minor loss is considered 10% of frictional loss then total head $\mathrm{H}_{\mathrm{m}}=$ Static head+head loss due to friction+head loss due to minor loss $\mathrm{H}_{\mathrm{m}}=\text { Static head }+\left(\mathrm{h}_{\mathrm{s}}+\mathrm{h}_{\mathrm{d}}\right)+10 \%\left(\mathrm{~h}_{\mathrm{s}}+\mathrm{h}_{\mathrm{d}}\right)$ $\mathrm{H}_{\mathrm{m}}=25+11.603+\frac{10}{100}(11.603)$ $\mathrm{H}_{\mathrm{m}}=37.76 \mathrm{~m} .$ $\mathrm{P}=\frac{\gamma_{\mathrm{w}} \times \mathrm{Q} \times \mathrm{H}_{\mathrm{m}}}{\eta}$ $\mathrm{P}=\frac{9810 \times 30 \times 10^{-3} \times 37.76}{0.85}=13073.84 \mathrm{w}$ $\mathrm{P}=13.073 \mathrm{kw}$ Attempt any TWO of the following Find the intensity of pressure in $\mathrm{N} / \mathrm{m}^{\mathbf{2}}$ on the base of the container When, i) Water stands to height of $\mathbf{1 . 2 5 m}$ in it. ii) Only oil stands for 1.25 m . The specific gravity of oil is $\mathbf{0 . 8 0}$. iii) When oil Height is 0.625 m stands on water of 1 m height . Draw the pressure diagram for all cases. Case I) Water stands to height of $\mathbf{1 . 2 5 m}$ $\begin{aligned} & \mathrm{P}=\gamma_{\mathrm{w}} \times \mathrm{h} \\ & \mathrm{P}=9810 \times 1.25 \\ & \mathrm{P}=12262.5 \mathrm{~N} / \mathrm{m}^{2} \end{aligned}$	1 1 OR 1 1 1	6

	Sub. Que.	Model Answer	Marks	Total Marks

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	b) Ans,	Find the resultant pressure and its position for a tank wall containing liquid of specific gravity 0.8 to a depth of 1.5 m on one side, while on other side there is water to a depth of 3.0 m . 1) Pressure of liquid of specific gravity 0.8 $\begin{aligned} & \mathrm{P}_{1}=\frac{1}{2} \times \gamma_{w} \times \mathrm{h}_{1}^{2} \\ & \mathrm{P}_{1}=\frac{1}{2} \times(9810 \times 0.8) \times 1.5^{2} \\ & \mathrm{P}_{1}=8829 \mathrm{~N} / \mathrm{m}^{2} \\ & \mathrm{P}_{1}=8.829 \mathrm{kN} / \mathrm{m}^{2} \end{aligned}$ 2) Pressure due to water $\begin{aligned} & \mathrm{P}_{2}=\frac{1}{2} \times \gamma_{w} \times \mathrm{h}_{2}^{2} \\ & \mathrm{P}_{2}=\frac{1}{2} \times(9810 \times 1) \times 3^{2} \\ & \mathrm{P}_{2}=44145 \mathrm{~N} / \mathrm{m}^{2} \\ & \mathrm{P}_{2}=44.145 \mathrm{kN} / \mathrm{m}^{2} \end{aligned}$ 3) Resultant pressure $\begin{aligned} & \mathrm{P}=\mathrm{P}_{2}-\mathrm{P}_{1} \\ & \mathrm{P}=44.145-8.829 \\ & \mathrm{P}=35.316 \mathrm{kN} / \mathrm{m}^{2} \end{aligned}$ 4) Position of centre of pressure from base $\begin{aligned} & \mathrm{P} \overline{\mathrm{~h}}=\mathrm{P}_{2} \overline{\mathrm{~h}}_{2}-\mathrm{P}_{1} \overline{\mathrm{~h}}_{1} \\ & 35.316 \overline{\mathrm{~h}}=\left(44.145 \times \frac{1}{3} \times 3\right)-\left(8.829 \times \frac{1}{3} \times 1.5\right) \\ & \overline{\mathrm{h}}=\frac{39.730}{35.316} \\ & \overline{\mathrm{~h}}=1.125 \mathrm{~m} \end{aligned}$	1	6

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
		by using continuity equation $\begin{aligned} & \mathrm{Q}=\mathrm{A}_{\mathrm{C}} \times \mathrm{V}_{\mathrm{C}} \\ & 0.01=\frac{\pi}{4} \times(0.225)^{2} \times / \mathrm{V}_{A} \\ & \mathrm{~V}_{\mathrm{C}}=0.251 \mathrm{~m} / \mathrm{s} \end{aligned}$ Mid length $=6 / 2=3 \mathrm{~m}$. Considering 50% of total head loss at mid length $\mathrm{h}_{\mathrm{L}}=0.10 / 2=0.05 \mathrm{~m}$ Applying Bernoulli's theorem: Assuming flow from A to C $\begin{aligned} & \frac{\mathrm{P}_{\mathrm{A}}}{\gamma}+\frac{\mathrm{V}_{\mathrm{A}}^{2}}{2 g}+\mathrm{Z}_{\mathrm{A}}=\frac{\mathrm{P}_{\mathrm{C}}}{\gamma}+\frac{\mathrm{V}_{\mathrm{C}}^{2}}{2 g}+\mathrm{Z}_{\mathrm{C}}+\mathrm{h}_{\mathrm{L}} \\ & \frac{1000 \times 10^{3}}{9810}+\frac{0.141^{2}}{2 \times 9.81}+0=\frac{\mathrm{P}_{\mathrm{C}}}{9810}+\frac{0.251^{2}}{2 \times 9.81}+0+0.05 \\ & 101.936+1.013 \times 10^{-3}+0=\frac{\mathrm{P}_{\mathrm{C}}}{9810}+0.0532 \\ & 101.883=\frac{\mathrm{P}_{\mathrm{C}}}{9810} \\ & \mathrm{P}_{\mathrm{B}}=999.48 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2} \\ & \mathrm{P}_{\mathrm{B}}=99.94 \mathrm{~N} / \mathrm{cm}^{2} \end{aligned}$	1/2	6

