

### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

dol Answers Summer 2010



Sub. Code: 22401

Model Answer: Summer - 2019
Subject: Hydraulics

\_\_\_\_\_

#### **Important Instructions to Examiners**

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

| Que.    | Sub.       | Model Answer                                                                           | Marks | Total             |
|---------|------------|----------------------------------------------------------------------------------------|-------|-------------------|
| No. Q.1 | Que.       | Attempt any <u>FIVE</u> of the following:                                              |       | <b>Marks</b> (10) |
| Q.1     | a)         | Define weight density and relative density and give its unit.                          |       | (10)              |
|         | Ans.       | i. Weight Density: It is the weight per unit volume.                                   | 1/2   |                   |
|         |            | OR                                                                                     |       |                   |
|         |            | It is the ratio of weight to the volume                                                |       |                   |
|         |            | Unit: N/m <sup>3</sup> or kN/m <sup>3</sup>                                            | 1/2   |                   |
|         |            |                                                                                        | /2    |                   |
|         |            | ii. Relative Density: It is the ratio of specific weight of liquid to                  |       |                   |
|         |            | the specific weight of pure water at 4°C.                                              | 1./   |                   |
|         |            | OR                                                                                     | 1/2   |                   |
|         |            | It is the ratio of density of liquid to the density of pure water at 4 <sup>0</sup> C. |       |                   |
|         |            | Unit: No unit.                                                                         |       | 2                 |
|         |            |                                                                                        | 1/2   |                   |
|         | <b>b</b> ) | Define total pressure and centre of pressure with its unit.                            |       |                   |
|         | Ans.       | i) <b>Total Pressure:</b> The force exerted by the static fluid on the                 | 1/2   |                   |
|         |            | surface in contact with the fluid is called as total pressure.                         | /2    |                   |
|         |            | Unit: kN or N                                                                          | 1/2   |                   |
|         |            | i) Centre of pressure: The point at which the total pressure is                        | 1/2   |                   |
|         |            | suppose to be act is called as centre of pressure.                                     | 1/    | 2                 |
|         |            | Unit: Meter (m)                                                                        | 1/2   | 2                 |
|         |            |                                                                                        |       |                   |
|         |            |                                                                                        |       |                   |
|         |            |                                                                                        |       |                   |
|         |            |                                                                                        |       |                   |
|         |            |                                                                                        |       |                   |
|         |            |                                                                                        |       |                   |
|         |            | OUR CENTERS:                                                                           |       |                   |







| Que.<br>No. | Sub.<br>Que. | Model Answer                                                                                                               | Marks        | Total<br>Marks |
|-------------|--------------|----------------------------------------------------------------------------------------------------------------------------|--------------|----------------|
| Q.1         | c)<br>Ans.   | Define datum head and pressure head and give its unit.  i. Datum head: It is the head possessed by fluid due to            | 1/2          |                |
|             |              | height above the datum  Unit: meter (m)                                                                                    | 1/2          |                |
|             |              |                                                                                                                            |              |                |
|             |              | ii. Pressure head: It is the head possessed by fluid due to pressure force by the flowing fluid.                           | 1/2          |                |
|             |              | Unit: meter (m)                                                                                                            | 1/2          | 2              |
|             | d)<br>Ans.   | Enlist any two factors on which friction coefficient 'F' depends.  i. Diameter of pipe  ii. Velocity of flow               | 1<br>each    |                |
|             |              | iii. Reynold's number of the flow iv.Roughness condition of the pipe surface                                               | (any<br>two) | 2              |
|             | e)<br>Ans.   | State the formula for specific energy with components names.  E = Potential head + Kinetic head                            |              |                |
|             |              | $E = y + \frac{v^2}{2g}$                                                                                                   | 1            |                |
|             |              | Where,<br>y = Depth of liquid flow<br>v = Velocity of liquid                                                               | 1            | 2              |
|             | f)<br>Ans.   | Define suction head and delivery head with diagram.  i. Suction head: It is defined as vertical distance between lowest    | 1/2          |                |
|             | 71115.       | water level in sump well and centre-line of pump.  ii <b>Delivery head:</b> It is defined as the vertical distance between |              |                |
|             |              | centre-line of the pump and highest level in the overhead tank up to which water is lifted.                                | 1/2          |                |
|             |              | overhead tank  hd = delivery  Delivery Pipe                                                                                |              |                |
|             |              | Hm= Monometric head  hd = delivery head  Centre line of the Pump Impeller Suction head  Suction Pipe                       | 1            | 2              |
|             |              | Sump well Foot valve with strainer                                                                                         |              |                |
|             |              | Fig: Centrifugal Pump                                                                                                      |              |                |
|             |              | OR                                                                                                                         |              |                |
|             |              | OUR CENTERS:                                                                                                               |              |                |



**Model Answer: Summer - 2019** 



| Que.<br>No. | Sub.<br>Que. | Model Answer                                                                                                                                                                                                                                                                                                    | Marks | Total<br>Marks             |
|-------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------|
| Q.1         |              | Hd =  delivery pipe  piston  Hs =  Suction  Head  Sump well                                                                                                                                                                                                                                                     | 1     |                            |
|             |              | Fig: Single Acting Reciprocating Pump                                                                                                                                                                                                                                                                           |       |                            |
|             | g)<br>Ans.   | Define uniform flow and non-uniform flow and give practical example for each  i. Uniform flow: The flow in which velocity at a given time does not change both in magnitude and direction from point to point in the flowing liquid is called uniform flow Examples:                                            | 1/2   |                            |
|             |              | <ul> <li>a. Flow of liquid under pressure through long pipe lines of constant diameter</li> <li>b. Flow through a channel having uniform cross sectional area</li> <li>ii. Non Uniform flow: The flow in which velocity at a given time changes from point to point in flowing fluid. is called non-</li> </ul> | 1/2   |                            |
|             |              | uniform flow.  Examples:  a. Flow of liquid under pressure through long pipe lines of varying diameter                                                                                                                                                                                                          | 1/2   | 2                          |
|             |              | b. Flow in river where cross sectional area changes.                                                                                                                                                                                                                                                            | 1/2   | (12)                       |
| Q.2         | a)           | Attempt any <u>THREE</u> of the following:                                                                                                                                                                                                                                                                      |       | (12)                       |
|             | Ans.         | Explain with neat sketch variation of pressure in horizontal and vertical direction in static liquid.                                                                                                                                                                                                           |       |                            |
|             |              | a) Pressure diagram for horizontal surface                                                                                                                                                                                                                                                                      |       |                            |
|             |              | h<br>P= egh                                                                                                                                                                                                                                                                                                     | 1     |                            |
|             |              | OUR CENTERS:                                                                                                                                                                                                                                                                                                    |       | 200 <b>2</b> of <b>2</b> 4 |



**Model Answer: Summer - 2019** 



| Que.<br>No. | Sub.<br>Que. | Model Answer                                                                                                                                                                                                                                                                   | Marks | Total<br>Marks |
|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q.2         | a)           | Pressure intensity at bottom $P = \rho gh$ $P = \gamma h$ Total pressure on bottom = pressure intensity x Area of bottom surface                                                                                                                                               | 1     |                |
|             |              | b)Pressure diagram for vertical surface $P = Pgh$ Pressure diagram for vertical Surface  Pressure intensity at base $P = \rho gh$                                                                                                                                              | 1     |                |
|             |              | Total pressure per meter = $\frac{1}{2}\gamma h \times h$<br>= $\frac{1}{2}\gamma h^2$<br>$\bar{h}$ will be at $\frac{2}{3}h$ from free surface and $\frac{1}{3}h$ from base                                                                                                   | 1     | 4              |
|             | b)           | State and explain Bernoullis theorem with any two practical application of it.                                                                                                                                                                                                 |       |                |
|             | Ans.         | It states that in a steady ,ideal flow of an incompressible fluid, the total energy at any point of the fluid is always constant . Total energy = Constant Pressure energy + Kinetic energy + Potential energy = Constant $\frac{P}{\gamma_L} + \frac{V^2}{2g} + Z = Constant$ | 1     |                |





**Model Answer: Summer - 2019** 

| Subject: Hydraulics |     | Sub. Code: 22401 |  |  |            |  |
|---------------------|-----|------------------|--|--|------------|--|
|                     |     |                  |  |  |            |  |
|                     | 0.1 |                  |  |  | <b>T</b> 4 |  |

| <u> </u>    | Sub. |                                                                                                                                | Total        |       |
|-------------|------|--------------------------------------------------------------------------------------------------------------------------------|--------------|-------|
| Que.<br>No. | Que. | Model Answer                                                                                                                   | Marks        | Marks |
| Q.2         | b)   | ***                                                                                                                            |              |       |
|             |      | Where,                                                                                                                         |              |       |
|             |      | $\frac{p}{\gamma}$ = Pressure head                                                                                             | 1            |       |
|             |      | $V^2 = V_{\text{alogity hand}}$                                                                                                |              |       |
|             |      | $\frac{v^2}{2g}$ = Velocity head                                                                                               |              |       |
|             |      | z = Datum head                                                                                                                 |              |       |
|             |      | Practical Application of Bernoullis is as follows                                                                              | 1            | 4     |
|             |      | i. Venturimeter ii. Orifice meter                                                                                              | each         |       |
|             |      | iii. Pitot tube                                                                                                                | (any<br>two) |       |
|             | ,    | Find the discharge through the nineline 20cm in diameter and                                                                   |              |       |
|             | c)   | Find the discharge through the pipeline 20cm in diameter and 1500 m long. The drop in water level is 10 m. Assume $F = 0.02$ . |              |       |
|             |      | Also draw TEL.                                                                                                                 |              |       |
|             | Ans. | Data: H= 10 m, D= 0.2 m, L= 1500 m, F= 0.02                                                                                    |              |       |
|             |      | Considering Minor losses                                                                                                       |              |       |
|             |      |                                                                                                                                |              |       |
|             |      | $H = \frac{v^2}{2g} \left( 1.5 + \frac{fL}{D} \right)$                                                                         | 1            |       |
|             |      | $10 = \frac{v^2}{2 \times 9.81} \left( 1.5 + \frac{0.02 \times 1500}{0.2} \right)$                                             | 1            |       |
|             |      |                                                                                                                                |              |       |
|             |      | $v = 1.138 \text{ m/s}$ $Q = A \times V$                                                                                       | 1            |       |
|             |      |                                                                                                                                |              |       |
|             |      | $Q = \frac{\pi}{4} \times (0.2)^2 \times 1.138$                                                                                |              |       |
|             |      | $Q = 0.035 \text{ m}^3 / \text{s}$                                                                                             | 1            |       |
|             |      | OR                                                                                                                             | 1            |       |
|             |      | Neglecting minor losses                                                                                                        | OR           |       |
|             |      | $H = \frac{flv^2}{2gd}$                                                                                                        |              |       |
|             |      |                                                                                                                                | 1            |       |
|             |      | $10 = \frac{0.02 \times 1500 \times v^2}{2 \times 9.81 \times 0.2}$                                                            | 1            |       |
|             |      | $10 = \frac{30 \times v^2}{3.924}$                                                                                             |              |       |
|             |      | $\begin{array}{c} 3.924 \\ v = 1.143 \text{ m/s} \end{array}$                                                                  | 1            |       |
|             |      | $Q = A \times V$                                                                                                               |              |       |
|             |      | $Q = \frac{\pi}{4} \times (0.2)^2 \times 1.143$                                                                                |              |       |
|             |      | $Q = 0.0359 \text{ m}^3 / s$                                                                                                   | 1            |       |
|             |      | OUR CENTERS:                                                                                                                   |              |       |



### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

DEGREE & DIPLOMA
ENGINEERING

**Model Answer: Summer - 2019** 

| Subject: Hydraulics | Sub. Code: 22401 |  |  |  |
|---------------------|------------------|--|--|--|
|                     |                  |  |  |  |

| $\sim$      | α .          | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | <b>789</b>     |
|-------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Que.<br>No. | Sub.<br>Que. | Model Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marks | Total<br>Marks |
| Q.2         | c)           | Entry loss $\left(\frac{0.5 \sqrt{2}}{29}\right)$ H=10 m  A:  A:  C:  L=1500 m  History  Exit loss $\left(\frac{\sqrt{2}}{29}\right)$                                                                                                                                                                                                                                                                                                                                                                   | 1     | 4              |
|             | d)           | A 15 cm diameter pipe suddenly enlarge to 20 cm diameter. Calculate discharge through pipe if loss of head due to sudden enlargement is 30 cm of water.                                                                                                                                                                                                                                                                                                                                                 |       |                |
|             | Ans.         | By using continuity equation $\frac{a_1 \ v_1 = a_2 v_2}{\frac{\pi}{4} (0.15)^2 \times V_1 = \frac{\pi}{4} (0.20)^2 \times V_2}$ $\frac{\pi}{4} (0.15)^2 \times V_1 = \frac{\pi}{4} (0.20)^2 \times V_2$ $0.0176 \ V_1 = 0.0314 \ V_2$ $V_1 = 1.78 \ V_2$ Head loss due to sudden enlargement $h_L = \frac{(V_1 - V_2)^2}{2g}$ $0.3 = \frac{(1.78 V_2 - V_2)^2}{2g}$ $V_2 = 3.11 \ \text{m/s}$ $Q = A_2 \times V_2$ $Q = \frac{\pi}{4} \times (0.2)^2 \times 3.11$ $Q = 0.0976 \ \text{m}^3 / \text{s}$ | 1 1 1 | 4              |
|             |              | OUR CENTERS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                |





**Model Answer: Summer - 2019** 

| Que.       | Sub. | Model Answer                                                                                                                                                                                                                                                                                                        | Marks | Total      |
|------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|
| No. Q.3    | Que. | Attempt any <u>THREE</u> of the following                                                                                                                                                                                                                                                                           |       | Marks (12) |
| <b>Q.5</b> |      | recompt any <u>rineed</u> of the following                                                                                                                                                                                                                                                                          |       | (12)       |
|            | a)   | Explain the procedure for measurement of density of an oil in laboratory.                                                                                                                                                                                                                                           |       |            |
|            | Ans. | Procedure:  i. Weigh the empty mass of measuring cylinder by using electronic weighing balance. Record the mass in kg (W <sub>1</sub> ) ii. Pour 100 ml oil in measuring cylinder. Use a dropper to add or                                                                                                          | 1     |            |
|            |      | remove small amounts of oil and convert 100 ml of oil into m <sup>3</sup> iii. Weight the measuring cylinder with the oil in it. Record the mass in kg (W <sub>2</sub> )                                                                                                                                            | 1     |            |
|            |      | <ul> <li>iv. Find the mass of only oil by subtracting the mass of the empty measuring cylinder i.e. (W<sub>2</sub>-W<sub>1</sub>).</li> <li>v. Use mass and volume of the oil to calculate density of an oil.</li> <li>vi.Use following relation to calculate density of an oil</li> </ul>                          | 1     |            |
|            |      | Density = $\rho = \frac{m}{v}$ in kg/m <sup>3</sup> Where,                                                                                                                                                                                                                                                          | 1     | 4          |
|            |      | m = mass of liquid in kg.<br>v = volume of liquid in m <sup>3</sup> .                                                                                                                                                                                                                                               |       |            |
|            | b)   | A differential manometer connected to two pipes A and B in a pipeline containing an oil of specific gravity 0.75. A manometer reading is 0.75 m of calcium carbide of specific gravity 1.05. Find the pressure difference in kPa. If points A and B are at the same level and oil flows A to B as shown in Fig.No.1 |       |            |
|            | Ans. | → 0:1 (0:75) → A B                                                                                                                                                                                                                                                                                                  |       |            |
|            |      | x 0.75 m                                                                                                                                                                                                                                                                                                            |       |            |
|            |      | Fig. No. 1                                                                                                                                                                                                                                                                                                          |       |            |
|            |      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                               |       |            |
|            |      | OUR CENTERS :                                                                                                                                                                                                                                                                                                       |       |            |







Subject: Hydraulics

| Que.<br>No. | Sub.<br>Que. | Model Answer                                                                                                                                   | Marks | Total<br>Marks |  |
|-------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|--|
| Q.3         | b)           |                                                                                                                                                |       | Warks          |  |
| 4.0         | 2)           | for solution 1                                                                                                                                 |       |                |  |
|             |              | $S_1 = S_3 = 0.75$ Specific gravity of an oil                                                                                                  |       |                |  |
|             |              | $S_2 = 1.05$ Specific gravity of manometric liquid                                                                                             | 1     |                |  |
|             |              | $h_A + h_1 S_1 = h_B + h_2 S_2 + h_3 S_3$                                                                                                      |       |                |  |
|             |              | $h_A - h_B = h_2 S_2 + h_3 S_3 - h_1 S_1$                                                                                                      |       |                |  |
|             |              | $= (1.05 \times 0.75) + (0.75 \times (x - 0.75)) - (0.75 \times x)$                                                                            | 1     |                |  |
|             |              | $= 0.788 + 0.75 \times x - 0.563 - 0.75 \times x$                                                                                              |       |                |  |
|             |              | $h_A - h_B = 0.225 m$                                                                                                                          | 1     |                |  |
|             |              | $\therefore P_{A} - P_{B} = (h_{A} - h_{B}) \times \gamma_{w}$                                                                                 |       |                |  |
|             |              | $ = 0.225 \times 9.81 $                                                                                                                        |       |                |  |
|             |              |                                                                                                                                                | 1     | 4              |  |
|             |              | $= 2.207 \text{ kN/m}^3$                                                                                                                       | 0.0   | 0.0            |  |
|             |              | OR                                                                                                                                             | OR    | OR             |  |
|             |              | for solution 2                                                                                                                                 | 1     |                |  |
|             |              | $\frac{P_A}{\gamma_w} + (x + 0.75) \times 0.75 = \frac{P_B}{\gamma_w} + 0.75 \times x + 0.75 \times 1.05$                                      | 1     |                |  |
|             |              |                                                                                                                                                | 1     |                |  |
|             |              | $\frac{P_A}{x} - \frac{P_B}{x} = 0.75 \times x + 0.7875 - 0.75 \times x - 0.5625$                                                              |       |                |  |
|             |              | $\begin{pmatrix} \gamma_w & \gamma_w \\ (\mathbf{p} - \mathbf{p}) \end{pmatrix}$                                                               |       |                |  |
|             |              | $\frac{(P_A - P_B)}{m} = 0.225 m$                                                                                                              | 1     |                |  |
|             |              | γ <sub>w</sub>                                                                                                                                 |       |                |  |
|             |              | $P_{A} - P_{B} = 0.225 \times \gamma_{w}$                                                                                                      |       |                |  |
|             |              | $= 0.225 \times 9.81$                                                                                                                          | 1     | 4              |  |
|             |              | $= 2.207 \text{ kN/m}^3$                                                                                                                       | •     | •              |  |
|             | c)           | Explain with sketch working of syphon pipe.                                                                                                    |       |                |  |
|             |              |                                                                                                                                                |       |                |  |
|             | Ans.         | Entry loss Summit                                                                                                                              |       |                |  |
|             |              | D A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                        | 1     |                |  |
|             |              | Reservoir Reservoir                                                                                                                            | 1     |                |  |
|             |              | H.G.L. D V2 VB                                                                                                                                 |       |                |  |
|             |              |                                                                                                                                                |       |                |  |
|             |              |                                                                                                                                                |       |                |  |
|             |              | Fig. Working of Syphon Pipe                                                                                                                    |       |                |  |
|             |              | i. Syphon is long bent pipe which is used to transfer the liquid from                                                                          |       |                |  |
|             |              | reservoir at a higher level to another reservoir at a lower level,                                                                             |       |                |  |
|             |              | When two reservoirs are separated by a hill or high level ground as                                                                            |       |                |  |
|             |              | shown in figure.  The symbolic action is the process of riging of water from inlet unto                                                        |       |                |  |
|             |              | <b>ii.</b> The syphonic action is the process of rising of water from inlet upto summit and beyond summit water flows under action of gravity. |       |                |  |
|             |              | iii. The highest point of syphon is called summit.                                                                                             | 3     | 4              |  |
|             |              | iv. As shown in Fig. above the portion of syphon between C and D is                                                                            |       |                |  |
|             |              | above hydraulic grade line having pressure below atmospheric                                                                                   |       |                |  |
|             |              | pressure i.e. negative pressure.                                                                                                               |       |                |  |
|             |              | v. It is essential that pressure at summit is less than atmospheric                                                                            |       |                |  |
|             |              | pressure or negative pressure to rise the liquid or water in the inlet                                                                         |       |                |  |
|             |              | limb. OUR CENTERS:                                                                                                                             |       |                |  |





**Model Answer: Summer - 2019** 

| Que.<br>No. | Sub.<br>Que. | Model Answer                                                                                                               | Marks | Total<br>Marks |
|-------------|--------------|----------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q.3         | d)           | State with sketch different shapes of Artificial channels. Give the formula for wetted area, wetted perimeter for any two. |       | TIMINS         |
|             | Ans.         | 1. Rectangular channel:                                                                                                    |       |                |
|             |              | b = bed width of channel  d = depth of flow of channel                                                                     |       |                |
|             |              | 2. Trapezoidal channel:                                                                                                    | 1/2   |                |
|             |              | 3. Circular section:                                                                                                       | 1/2   |                |
|             |              | 4.Triangular section:                                                                                                      |       |                |
|             |              |                                                                                                                            | 1/2   |                |
|             |              | OUR CENTERS :                                                                                                              |       |                |



**Model Answer: Summer - 2019** 



| Que. | Sub. |            |                                                                   |                                    |                                                                                    |                                            |                      | Total    |
|------|------|------------|-------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------|----------------------|----------|
| No.  | Que. |            | Model Answer                                                      |                                    |                                                                                    |                                            | Marks                | Marks    |
| Q.3  | d)   |            |                                                                   |                                    |                                                                                    |                                            |                      | 11101115 |
|      | ,    | Sr.No.     | Shape                                                             | Area                               | a (A)                                                                              | Perimeter (P)                              |                      |          |
|      |      | 1          | Rectangular                                                       | A= bxd                             |                                                                                    | P = b+2d                                   |                      |          |
|      |      | 2          | Trapezoidal                                                       | A= bd+                             | $nd^2$                                                                             | $P=b+2d\sqrt{n^2+1}$                       | 1                    | 4        |
|      |      | 3          | Circular                                                          | $A = \frac{1}{8}(\theta - \theta)$ | $A = \frac{1}{8}(\theta - \sin \theta)D^{2} \qquad P = \frac{1}{2}\theta \times D$ |                                            | each<br>(any<br>two) |          |
|      |      | 4          | Triangular                                                        | $A = Zy^2$                         |                                                                                    | $P = 2y\sqrt{Z^2} + 1$                     |                      |          |
| Q.4  |      |            |                                                                   |                                    |                                                                                    |                                            |                      | (12)     |
| Q.4  |      | Attempts   | any <u>THREE</u> of t                                             | he followi                         | ing:                                                                               |                                            |                      | (12)     |
|      | a)   | Differenti | ate Reciprocatin                                                  | g pump w                           | vi <mark>th c</mark> entri                                                         | fugal pump.                                |                      |          |
|      | ŕ    | Sr.<br>No. | Reciprocating                                                     | Pump                               | Cent                                                                               | trifugal Pump                              |                      |          |
|      | Ans. |            | For Reciprocating                                                 | <u>*</u>                           |                                                                                    | ifugal pump                                |                      |          |
|      |      | 2          | discharge is fluctua<br>Suitable for less di<br>and higher heads. |                                    |                                                                                    | is continuous.  For large discharge heads. |                      |          |
|      |      | 3          | Complicated in conbecause of more nuparts.                        |                                    |                                                                                    | construction<br>s number of parts.         |                      |          |
|      |      | 1          | It has reciprocating there is more wear                           |                                    |                                                                                    | ating elements so                          |                      |          |
|      |      |            | It cannot run at hig                                              |                                    |                                                                                    | at high speed.                             | 1                    | 4        |
|      |      | 6          | Air vessels are req                                               |                                    | Air vesse                                                                          | ls are not required.                       | each                 | •        |
|      |      |            | Starting torque is le                                             |                                    |                                                                                    | orque is more.                             | (any                 |          |
|      |      |            | It has more efficien                                              | •                                  |                                                                                    | s efficiency.                              | four)                |          |
|      |      |            | It can not handle de Requires more floor                          |                                    |                                                                                    | less floor area and                        |                      |          |
|      |      | 10         | and requires heavy foundation.                                    |                                    | simple fo                                                                          |                                            |                      |          |
|      |      |            |                                                                   |                                    |                                                                                    |                                            |                      |          |
|      |      |            |                                                                   |                                    |                                                                                    |                                            |                      |          |
|      |      |            |                                                                   |                                    |                                                                                    |                                            |                      |          |
|      |      |            |                                                                   |                                    |                                                                                    |                                            |                      |          |
|      |      |            | O.                                                                | UR CENT                            | TERS:                                                                              |                                            |                      |          |



**Model Answer: Summer - 2019** 



| Que. | Sub.<br>Que. | Model Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Marks     | Total<br>Marks |
|------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
| Q.4  | b)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                |
| _    | Ans.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                |
|      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                |
|      |              | i.Explain Dupuit's equation for equivalent pipes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                |
|      |              | $\frac{l}{d^5} = \frac{l}{d_1^5} + \frac{l}{d_2^5} + \frac{l}{d_3^5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1         |                |
|      |              | $d^5  d_1^5  d_2^5  d_3^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                |
|      |              | $l = length of equivalent pipe = l_1 + l_2 + l_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                |
|      |              | d = diameter of equivalent pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1         |                |
|      |              | $d_1, d_2, d_3$ = diameter of pipes in series<br>$l_1, l_2, l_3$ = length of pipes in series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1         |                |
|      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                |
|      |              | ii.Define Moddy's diagra m diagram with its use.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                |
|      |              | Moody's diagram: It is the graphical representation of Friction factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                |
|      |              | verses Reynold's number (R <sub>e</sub> ) Curves for various values of relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1         |                |
|      |              | roughness (ε)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                |
|      |              | Uses: Moody's chart is used to find friction factor of a commercial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1         | 4              |
|      |              | pipe.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1         |                |
|      | c)<br>Ans.   | i) Define Reynold's number and give any two applications of it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                |
|      | Alls.        | Reynold's Number: It is the ratio of inertia force to viscous force.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1         |                |
|      |              | Applications:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                |
|      |              | i) Predicting whether the flow is laminar.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17        |                |
|      |              | ii) Predicting whether the flow is turbulent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ½<br>each |                |
|      |              | iii) Finding out coefficient of friction in order to determine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (any      |                |
|      |              | Frictional loss very accurately.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | two)      |                |
|      |              | ii)Find the discharge flowing through a pipe of 10 cm dia and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                |
|      |              | velocity is 1 m/sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                |
|      |              | Data: $d = 0.1 \text{m}$ , $V = 1 \text{m/s}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1         |                |
|      |              | $Q = A \times V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1         |                |
|      |              | $Q = \frac{\pi}{4} \times (0.1)^2 \times 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | 4              |
|      |              | $Q = 0.00785 \text{ m}^3 / s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1         |                |
|      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                |
|      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                |
|      |              | OUR CENTERS ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                |
|      | •            | <del>Ven entre de la constante de </del> | •         |                |



### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)



**Model Answer: Summer - 2019** 

| Subject: Hydraulics | Sub. Code: 22401 |  |  |
|---------------------|------------------|--|--|
|                     |                  |  |  |

| Que. | Sub.  |                                                                                                                                                                                                                                                                                        |       | Total |
|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| No.  | Que.  | Model Answer                                                                                                                                                                                                                                                                           | Marks | Marks |
| Q.4  | d)    | A circular plate of 4 m diameter is immersed in water such that its                                                                                                                                                                                                                    |       |       |
|      |       | greatest and least depth below the free surface of water are 6m                                                                                                                                                                                                                        |       |       |
|      |       | and 4m respectively. Calculate:                                                                                                                                                                                                                                                        |       |       |
|      |       | i) Total pressure on one face of the plate.                                                                                                                                                                                                                                            |       |       |
|      |       | ii) The position of centre of pressure.                                                                                                                                                                                                                                                |       |       |
|      | Ans.  |                                                                                                                                                                                                                                                                                        |       |       |
|      | Alis. | Data: Diameter of plate (d) = 4 m<br>Here,<br>$\sin \theta = \frac{2}{4}$<br>$\theta = \sin^{-1}(0.5)$<br>$\theta = 30^{\circ}$<br>from fig.<br>$\sin \theta = \frac{BC}{AB}$<br>BC = $\sin \theta \times AB$<br>= $\sin 30^{\circ} \times 2$<br>= 1 m<br>$\therefore \bar{y} = 4 + 1$ |       |       |
|      |       |                                                                                                                                                                                                                                                                                        | 1     |       |
|      |       | $\bar{y} = 5 \text{ m}$                                                                                                                                                                                                                                                                |       |       |
|      |       |                                                                                                                                                                                                                                                                                        |       |       |
|      |       |                                                                                                                                                                                                                                                                                        |       |       |
|      |       |                                                                                                                                                                                                                                                                                        |       |       |
|      |       |                                                                                                                                                                                                                                                                                        |       |       |
|      |       | OUR CENTERS:                                                                                                                                                                                                                                                                           |       |       |



### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)





| Subje       | <b>ct:</b> Hydr | aulics                                     | Sub. Code: 22 | 401            |
|-------------|-----------------|--------------------------------------------|---------------|----------------|
| Que.<br>No. | Sub.<br>Que.    | Model Answer                               | Marks         | Total<br>Marks |
| Q.4         | d)              | i) Total pressure on one face of plate (P) |               |                |



#### MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)





| Subje | <b>ct:</b> Hydr | aulies Sub.                                                                                                                                          | Code: 22 | 401            |
|-------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|
| Que.  | Sub.<br>Que.    | Model Answer                                                                                                                                         | Marks    | Total<br>Marks |
| Q.4   | e)              | <b>Capillarity:</b> It is defined as the phenomenon of rise or fall of liquid surface in small tube relative to the adjacent general level of liquid | 1/2      |                |





**Model Answer: Summer - 2019** 



Subject: Hydraulics

|             |              |                                                       | Sub. Couc. 22 101 |                |
|-------------|--------------|-------------------------------------------------------|-------------------|----------------|
| Que.<br>No. | Sub.<br>Que. | Model Answer                                          | Marks             | Total<br>Marks |
|             | •            | $H_{L} = \frac{0.5V^{2}}{2g}$                         | 1/2               |                |
|             |              | 2. Loss of head due to sudden expansion.              |                   |                |
|             |              | $V_1$ $V_2$ $A_2$                                     | 1/2               |                |
|             |              | $H_{L} = \frac{(V_{1} - V_{2})^{2}}{2g}$              | 1/2               |                |
|             |              | 3. Loss of head due to sudden contraction.            |                   |                |
|             |              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1/2               |                |
|             |              | $H_{L} = \frac{0.5V^{2}}{2g}$                         | 1/2               |                |
|             |              | 4. Loss of head at exit.                              |                   |                |
|             |              | 20                                                    | 1/2               |                |
|             |              | $H_{L} = \frac{V^{2}}{2g}$                            | 1/2               |                |







Subject: Hydraulics

| Que.<br>No. | Sub.<br>Que. | Model Answer                                                                                                                                                                                     | Marks | Total<br>Marks |
|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q.5         | a)           | 5. Loss of head due to obstruction.                                                                                                                                                              | 1/2   | Marks          |
|             |              | $H_{L} = \left[\frac{A}{C_{c} \times a} - 1\right]^{2} \frac{V^{2}}{2g}$ $A = c/ \text{ s Area of pipe}$ $a = c/ \text{ s Area of Opening}$                                                      | 1/2   |                |
|             |              | C <sub>C</sub> =Coefficient contraction  6. Loss of head due to pipe fitting.  B  C  C  C  C  C  C  C  C  C  C  C  C                                                                             | 1/2   | 6              |
|             |              | $H_L = K \frac{V^2}{2g}$ (Note: Figure of any one of the pipe fitting should be considered)                                                                                                      |       |                |
|             | b)           | Determine the most economical section of a trapezoidal channel for carrying discharge 15 m <sup>3</sup> /sec with bed slope of 1:4500. The side slopes are 4H:3V. Take Manning's constant 0.015. |       |                |
|             | Ans.         | Data: Q= 15 m <sup>3</sup> /s, S= 1/4500, n= $\frac{4}{3}$ , N= 0.015                                                                                                                            |       |                |
|             |              | A 1.33d 1 1.33d 1 D  B B CENTERS                                                                                                                                                                 |       |                |
|             |              | OUR CENTERS:                                                                                                                                                                                     |       |                |





**Model Answer: Summer - 2019** 

|        | Subject. Trydraunes |              |      |         | TU1            |
|--------|---------------------|--------------|------|---------|----------------|
|        | Sub.<br>Que.        | Model Answer |      | Marks   | Total<br>Marks |
| Que. S | Sub.                |              | Sub. | 1 1 1 1 | Total          |
|        |                     |              |      |         |                |



**Model Answer: Summer - 2019** 



| Que. Sub<br>No. Que | VIOGEL Answer                                                                                                                                                                                                                                                                                                | Marks | Total<br>Marks |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q.5 c)              | Calculate the power of the pump from following data:  i) Total Static lift = 25 m  ii) Diameter of suction pipe = 12 cm  iii) Diameter of delivery pipe = 10 cm  iv) Length of suction pipe = 5 m  v) Length of delivery pipe = 50 m  vi) F= 0.03 for both pipes  vii) Q= 30 lit/sec  viii) Efficiency = 85% |       |                |
| Ans                 | Velocity at suction pipe $(V_s) = \frac{Q}{A_s}$ $V_s = \frac{30 \times 10^{-3}}{\frac{\pi}{4} \times (0.12)^2}$                                                                                                                                                                                             |       |                |
|                     | $V_{s} = 2.65 \text{ m/s}$ Velocity at delivery pipe $(V_{d}) = \frac{Q}{A_{d}}$                                                                                                                                                                                                                             | 1/2   |                |
|                     | $V_{d} = \frac{30 \times 10^{-3}}{\frac{\pi}{4} \times (0.1)^{2}}$ $V_{d} = 3.82 \text{ m/s}$ By neglecting minor losses Head loss due to friction in suction pipe (h <sub>s</sub> )                                                                                                                         | 1/2   |                |
|                     | $h_s = \frac{\text{flv}_s^2}{2\text{gd}_s}$ $h_s = \frac{0.03 \times 5 \times 2.65^2}{2 \times 9.81 \times 0.12}$ $h_s = 0.447 \text{ m.}$ Head loss due to friction in delivery pipe (h <sub>d</sub> ) $h_d = \frac{\text{flv}_d^2}{2\text{gd}_d}$                                                          | 1     |                |
|                     | $h_{d} = \frac{0.03 \times 50 \times 3.82^{2}}{2 \times 9.81 \times 0.1}$ $h_{d} = 11.156 \text{ m.}$ $\boxed{\text{Total head}(H_{m}) = 25 + h_{s} + h_{d}}$ $H_{m} = 25 + 0.447 + 11.156$ $H_{m} = 36.60 \text{ m.}$                                                                                       | 1     |                |
|                     | OUR CENTERS:                                                                                                                                                                                                                                                                                                 |       |                |



**Model Answer: Summer - 2019** 





Subject: Hydraulics

| Que.<br>No. | Sub.<br>Que. | Model Answer                                                                                                                                                                                                                                                                                                                                              | Marks | Total<br>Marks |
|-------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
|             |              | $P = \frac{\gamma_{w} \times Q \times H_{m}}{\eta}$ $P = \frac{9810 \times 30 \times 10^{-3} \times 36.60}{0.85} = 12672.21w$ $\boxed{P=12.67 \text{ kw}}$                                                                                                                                                                                                | 1     | 6              |
|             |              | OR                                                                                                                                                                                                                                                                                                                                                        |       |                |
|             |              | If minor loss is considered 10% of frictional loss then total head $H_m = \text{Static head+head loss due to friction+head loss due to minor loss } H_m = \text{Static head+}(h_s + h_d) + 10%(h_s + h_d)$                                                                                                                                                | OR    |                |
|             |              | $H_{m} = 25 + 11.603 + \frac{10}{100}(11.603)$ $H_{m} = 37.76 \text{ m.}$ $P = \frac{\gamma_{w} \times Q \times H_{m}}{\eta}$ $P = \frac{9810 \times 30 \times 10^{-3} \times 37.76}{0.85} = 13073.84 \text{ w}$                                                                                                                                          | 1     |                |
|             |              | P=13.073 kw                                                                                                                                                                                                                                                                                                                                               | 1     |                |
| Q.6         | a)           | Attempt any <u>TWO</u> of the following  Find the intensity of pressure in N/m <sup>2</sup> on the base of the container When,  i) Water stands to height of 1.25m in it.  ii) Only oil stands for 1.25 m. The specific gravity of oil is 0.80.  iii) When oil Height is 0.625 m stands on water of 1 m height.  Draw the pressure diagram for all cases. |       | (12)           |
|             | Ans.         | Case I) Water stands to height of 1.25m                                                                                                                                                                                                                                                                                                                   |       |                |
|             |              | $P = \gamma_{w} \times h$ $P = 9810 \times 1.25$ $P = 12262.5 \text{ N/m}^{2}$                                                                                                                                                                                                                                                                            | 1     |                |
|             |              | OUR CENTERS:                                                                                                                                                                                                                                                                                                                                              |       |                |



**Model Answer: Summer - 2019** 

| Que.<br>No. | Sub.<br>Que. | Model Answer                                                                                                                                                                                                                                                                         | Marks | Total<br>Marks |
|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q.6         |              | Case II) When oil stands for 1.25m $P = \gamma_{oil} \times h$ $P = 0.8 \times 9810 \times 1.25$ $\boxed{P = 9810 \text{ N/m}^2}$ Case III) When oil of specific gravity 0.8 stand at height of 0.625 over 1 meter water. For water. $P_1 = \gamma_w \times h$ $P_1 = 9810 \times 1$ | 1     |                |
|             |              | $P_{1} = 9810 \text{ N/m}^{2}$ For oil $P_{2} = \gamma_{\text{oil}} \times h$ $P_{2} = 9810 \times 0.8 \times 0.625$ $P_{2} = 4905 \text{ N/m}^{2}$ $P = P_{1} + P_{2}$ $P = 9810 + 4905$ $P = 14715 \text{ N/m}^{2}$                                                                | 1     |                |
|             |              | Water 1.25M 12262.5 N/m² (For Case I)                                                                                                                                                                                                                                                | 3     | 6              |
|             |              | OUR CENTERS:  (for Case II)  Our Case III)                                                                                                                                                                                                                                           |       |                |



Sub. Code: 22401

**Model Answer: Summer - 2019** Subject: Hydraulics

| Que. | Sub.<br>Que. | Model Answer                                                                                                                                                                                   | Marks | Total<br>Marks |
|------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Q.6  | b)           | Find the resultant pressure and its position for a tank wall containing liquid of specific gravity 0.8 to a depth of 1.5m on one side, while on other side there is water to a depth of 3.0 m. |       |                |
|      | Ans,         | 77                                                                                                                                                                                             |       |                |
|      |              | 1) Pressure of liquid of specific gravity 0.8                                                                                                                                                  | 1     |                |
|      |              |                                                                                                                                                                                                |       |                |
|      |              | $P_{1} = \frac{1}{2} \times \gamma_{w} \times h_{1}^{2}$ $P_{1} = \frac{1}{2} \times (9810 \times 0.8) \times 1.5^{2}$                                                                         |       |                |
|      |              | $P_1 = 8829 \text{ N/m}^2$                                                                                                                                                                     | 1     |                |
|      |              | $P_1 = 8.829 \text{ kN/m}^2$ 2) Pressure due to water                                                                                                                                          | 1     |                |
|      |              | $P_2 = \frac{1}{2} \times \gamma_w \times h_2^2$ $P_2 = \frac{1}{2} \times (9810 \times 1) \times 3^2$                                                                                         |       |                |
|      |              | $P_2 = 44145 \text{ N/m}^2$ $P_2 = 44.145 \text{ kN/m}^2$                                                                                                                                      | 1     |                |
|      |              | 3) Resultant pressure $P = P_2 - P_1$                                                                                                                                                          |       |                |
|      |              | P = 44.145 - 8.829                                                                                                                                                                             | 1     |                |
|      |              | $P = 35.316 \text{ kN/m}^2$ 4) Position of centre of pressure from base                                                                                                                        | •     |                |
|      |              | $P \bar{h} = P_2 \bar{h}_2 - P_1 \bar{h}_1$                                                                                                                                                    |       |                |
|      |              | $35.316\bar{h} = (44.145 \times \frac{1}{3} \times 3) - (8.829 \times \frac{1}{3} \times 1.5)$                                                                                                 | 1     |                |
|      |              | $\bar{h} = \frac{39.730}{35.316}$                                                                                                                                                              |       |                |
|      |              | $\bar{\mathbf{h}} = 1.125 \text{ m}$                                                                                                                                                           | 1     | 6              |
|      |              |                                                                                                                                                                                                |       |                |
|      |              |                                                                                                                                                                                                |       |                |
|      |              | OUR CENTERS:                                                                                                                                                                                   |       |                |





**Model Answer: Summer - 2019** 

| Subject. Trydraunes Sub. C |              |                                                                                                                                                                                                                                                                          |                                          |       |                |
|----------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------|----------------|
| Que.<br>No.                | Sub.<br>Que. | Model Answer                                                                                                                                                                                                                                                             |                                          | Marks | Total<br>Marks |
| Q.6                        | c)           | A horizontal pipe carrying water tapers from 30 cm dia. at A cm dia. at B in a length of 6 m. The pressure at A is 100 N/c the discharge is 600 lit/min. Calculate pressure at B in N/c the loss of head is 10 cm of water. Also calculate pressure is at it mid length. | em <sup>2</sup> . If m <sup>2</sup> . If |       |                |
|                            | Ans.         | 30CM Q= Goolit/min VB I 5CM                                                                                                                                                                                                                                              |                                          |       |                |
|                            |              | Data: $P_A = 100 \text{N/cm}^2$ , Head loss = 10 cm, $Q = 600 \text{ lit/min}$ $P_A = 100 \text{N/cm}^2$ $P_A = \frac{100 \text{N}}{(0.01)^2}$ $P_A = 1000 \times 10^3 \text{N/m}^2$ $Q = 600 \text{ lit/min}$                                                           |                                          | 1/2   |                |
|                            |              | $Q = \frac{600}{1000 \times 60} = 0.01 \text{m}^3/\text{sec}$                                                                                                                                                                                                            |                                          | 1     |                |
|                            |              | OUR CENTERS :                                                                                                                                                                                                                                                            |                                          |       |                |



**Model Answer: Summer - 2019** 



Subject: Hydraulics

|                    |                                                                                                                                                                                                                                                                                                                                                                                   |      | Sub. Code. 22401 |                |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------|----------------|--|
| Que. Sub. No. Que. | Model Answer                                                                                                                                                                                                                                                                                                                                                                      |      | Marks            | Total<br>Marks |  |
| Q.6                | by using continuity equation $Q = A_A \times V_A$ $0.01 = \frac{\pi}{4} \times (0.3)^2 \times V_A$ $V_A = 0.141 \text{ m/s}$ $Q = A_B \times V_B$ $0.01 = \frac{\pi}{4} \times (0.15)^2 \times V_B$ $V_B = 0.565 \text{ m/s}$                                                                                                                                                     |      | 1                |                |  |
|                    | Applying Bernoulli's theorem: Assuming flow from A to B $ \frac{P_A}{\gamma} + \frac{{V_A}^2}{2g} + Z_A = \frac{P_B}{\gamma} + \frac{{V_B}^2}{2g} + Z_B + h_L $ $ \frac{1000 \times 10^3}{9810} + \frac{0.141^2}{2 \times 9.81} + 0 = \frac{P_B}{9810} + \frac{0.565^2}{2 \times 9.81} + 0 + 0.10 $ $ 101.936 + 1.013 \times 10^{-3} + 0 = \frac{P_B}{9810} + 0.0162 + 0 + 0.10 $ |      | 1                |                |  |
|                    | $101.82 = \frac{P_B}{9810}$ $P_B = 998.86 \times 10^3 \text{ N/m}^2$ $P_B = 99.88 \text{ N/cm}^2$                                                                                                                                                                                                                                                                                 |      | 1                |                |  |
|                    | (Note: If the flow is from B to A is taken and attempted should considered.)                                                                                                                                                                                                                                                                                                      | l be |                  |                |  |
|                    | OUR CENTERS:                                                                                                                                                                                                                                                                                                                                                                      |      |                  |                |  |





**Model Answer: Summer - 2019** 

| Que.<br>No. | Sub.<br>Que. | Model Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Marks | Total<br>Marks |
|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
|             | Que.         | by using continuity equation $Q = A_C \times V_C$ $0.01 = \frac{\pi}{4} \times (0.225)^2 \times V_A$ $V_C = 0.251 \text{ m/s}$ Mid length = 6/2 = 3m. Considering 50 % of total head loss at mid length $h_L = 0.10/2 = 0.05 \text{ m}$                                                                                                                                                                                                                                 |       | Marks          |
|             |              | Applying Bernoulli's theorem: Assuming flow from A to C $\frac{P_A}{\gamma} + \frac{V_A^2}{2g} + Z_A = \frac{P_C}{\gamma} + \frac{V_C^2}{2g} + Z_C + h_L$ $\frac{1000 \times 10^3}{9810} + \frac{0.141^2}{2 \times 9.81} + 0 = \frac{P_C}{9810} + \frac{0.251^2}{2 \times 9.81} + 0 + 0.05$ $101.936 + 1.013 \times 10^{-3} + 0 = \frac{P_C}{9810} + 0.0532$ $101.883 = \frac{P_C}{9810}$ $P_B = 999.48 \times 10^3 \text{ N/m}^2$ $\boxed{P_B = 999.94 \text{N/cm}^2}$ | 1/2   | 6              |